Sparse Higher-Order Principal Components Analysis

نویسنده

  • Genevera Allen
چکیده

Traditional tensor decompositions such as the CANDECOMP / PARAFAC (CP) and Tucker decompositions yield higher-order principal components that have been used to understand tensor data in areas such as neuroimaging, microscopy, chemometrics, and remote sensing. Sparsity in high-dimensional matrix factorizations and principal components has been well-studied exhibiting many benefits; less attention has been given to sparsity in tensor decompositions. We propose two novel tensor decompositions that incorporate sparsity: the Sparse Higher-Order SVD and the Sparse CP Decomposition. The latter solves an `1-norm penalized relaxation of the single-factor CP optimization problem, thereby automatically selecting relevant features for each tensor factor. Through experiments and a scientific data analysis example, we demonstrate the utility of our methods for dimension reduction, feature selection, signal recovery, and exploratory data analysis of high-dimensional tensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularized Tensor Factorizations and Higher-Order Principal Components Analysis

High-dimensional tensors or multi-way data are becoming prevalent in areas such as biomedical imaging, chemometrics, networking and bibliometrics. Traditional approaches to finding lower dimensional representations of tensor data include flattening the data and applying matrix factorizations such as principal components analysis (PCA) or employing tensor decompositions such as the CANDECOMP / P...

متن کامل

Sparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains

In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...

متن کامل

Sparse Kernel Principal Components Analysis for Face Recognition in RGB Spaces

This paper presents a kinds of information fusion algorithm based on multi-channel color image. The color face image is first separated into three pseudo grayscale images: R, G, and B, then the partial characteristics of face is extracted by use of Gabor wavelet transform from each component to be eigenvector in series connection, which will be through dimensionality reduction by sparse kernel ...

متن کامل

Empirical kernel map approach to nonlinear underdetermined blind separation of sparse nonnegative dependent sources: pure component extraction from nonlinear mixture mass spectra

Nonlinear underdetermined blind separation of nonnegative dependent sources consists in decomposing a set of observed nonlinearly mixed signals into a greater number of original nonnegative and dependent component (source) signals. This hard problem is practically relevant for contemporary metabolic profiling of biological samples, where sources (a.k.a. pure components or analytes) are aimed to...

متن کامل

Identification of Differential Gene Pathways with Sparse Principal Component Analysis

The development of the technology makes it possible to measure large amount of genes expressions simultaneously. Since biological functions are mostly coordinated by multiple genes, called “gene pathway”, it is interesting to identify differential gene pathways which are associated with clinical phenotype. Principal component analysis has been proposed to identify differential gene pathways in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012